Methodology for Assessing the Lithium-Sulfur Battery Degradation for Practical Applications
نویسندگان
چکیده
منابع مشابه
Lithium-Sulfur Battery Technology Readiness and Applications—A Review
Lithium Sulfur (Li-S) battery is generally considered as a promising technology where high energy density is required at different applications. Over the past decade, there has been an ever increasing volume of Li-S academic research spanning materials development, fundamental understanding and modelling, and application-based control algorithm development. In this study, the Li-S battery techn...
متن کاملVanadium Oxide Nanostructures for Lithium Battery Applications
Lithium and Lithium-ion batteries for portable electronic devices and hybrid electric vehicles have gained great importance for energy storage today. However, how to prepare cathode materials with higher energy density, high potentials, and longer cycle life is still a challenge. Compared with commercial LiCoO2, vanadium oxides have higher specific capacity and interesting layered structures, w...
متن کاملStructured Silicon Anodes for Lithium Battery Applications
Pillar arrays fabricated on silicon substrates have been tested as potential anodes for lithium batteries. Electrodes of array characteristics, diameter 580 6 150 nm; fractional surface coverage 0.34; height 810 nm are reported here. Cyclic voltammetry ~CV! and cyclic galvanostatic tests of alloying/dealloying of electrochemically produced lithium with silicon were carried out, and results corr...
متن کاملUnderstanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery
Sulfurized polyacrylonitrile (SPAN) is one of the most important sulfurized carbon materials that can potentially be coupled with the carbonaceous anode to fabricate a safe and low cost “all carbon” lithium-ion battery. However, its chemical structure and electrochemical properties have been poorly understood. In this discussion, we analyze the previously published data in combination with our ...
متن کاملSynthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications
One-dimensional molybdenum dioxide-carbon nanofibers (MoO2-CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ECS Transactions
سال: 2017
ISSN: 1938-6737,1938-5862
DOI: 10.1149/07711.0479ecst